While it was well recognized that stem cells were constituents of embryonic tissues and bone marrow, these tissues are expensive and problematic to obtain easily. Moreover, it raises ethical and legal questions regarding their collection and uses, especially when envisaged for commercial puposes. It was not until the end of the 20th century that these cells were acknowledged in another kind of tissue. This recognition provided a basis for the collection, manipulation, and potential use of stem cells and other undifferentiated cells for therapy without resorting to embryonic or bone marrow materials. It can be seen as a transformational event in the design of large-scale commercial cell therapy products.
One undifferentiated cell type with particular potential in cellular therapy is the mesenchymal stromal cell (MSC). Formerly known as a mesenchymal stem cell, it was first identified by a Russian researcher Alexander Maximow in 1924, although the term MSC had not yet been referenced. This cell was then characterized by researchers who recognized its potential to differentiate into tissues such as bone, cartilage, muscle, and fat. Since the differentiation destination of MSCs is not fully pluripotent, these cells have more recently become known as “mesenchymal stromal cells” retaining the acronym MSC but not strictly “stem” cells.
MSCs have the potential to be versatile therapeutic agents for several conditions affecting the tissues in which they can differentiate. They respond strongly to injury and inflammation and therefore play a central role in tissue repair and regeneration. Surprisingly, MSCs can perform this role in both autologous and allogeneic (unrelated) recipients, opening up the possibility of using pre-prepared donor materials. Which gives the possibility to create larger-scale production and at a lower cost, in order to make it accessible to any patients.
Over the past 10 to 15 years, it has become recognized that the potential for repair and regeneration of MSCs can be harnessed and controlled for therapeutic purposes. More convenient tissue sources, the refinement of selection and expansion protocols, and the discreet targeting of specific pathologies are advancing rapidly. It is leading to a wide range of new therapeutics in clinical development pipelines around the world, potentially delivering more effective, safer, and cost-effective treatments to millions of patients.
It is clear that some cell therapies will continue a rapid phase of development and testing. The wide use of cell therapy products for an extensive range of regenerative functions is likely over the next decade or two years. There is also a potential for cellular therapy treatments for major affecting diseases such as cardiovascular disease, diabetes, cancer, etc. such as cosmetics or anti-aging treatments. It is possible that some of these treatments will be carried out completely in completely new markets, but also that cell therapies will supplant some conventional drug therapies, even those which are today carried out (often inadequately) by “successful” drugs.
The degree of penetration into developed and developing markets may track that of any recent innovations in healthcare, but this is a wave of innovation that might see developing markets as early adopters. Completely missing out on a generation of expensive proprietary chemical drugs that have dominated pharmaceuticals in developed markets for the past three decades. Significant involvement in cell therapy research and innovation outside of Europe, North America, and Japan is an early sign of this trend. It seems likely that the big pharmaceutical industry players will continue to be important in the cell therapy product market. Either through their ability to fund research and product development or through the aggressive acquisition of successful innovators.
It is also likely that only a few “big” ventures will emerge in this domain, which has not yet been fully embraced by companies in the conventional medicine business. What is certain is that there will only be a few “fully integrated” companies in the market that do everything from discovery, raw material sourcing, R&D, production to marketing and sales. Each aspect involves new challenges, new skills, and innovative business leveraging. We can therefore expect companies that undertake different stages of the process to strengthen their position as specialist service providers with the ability to influence their own specialized capabilities. This is a positive trend that can lower overall costs and help bring good products to market faster.
For questions related to this article, please contact:
80, AVENUE AUGUSTIN FLICHE,
34295 MONTPELLIER CEDEX 5,
FRANCE
AVENUE DES PLANCHES 20C,
1820 MONTREUX, SWITZERLAND
CYTEA|BIO IS A PIPELINE COMPANY OF MEDXCELL
VISIT MEDXCELL’S WEBSITE FOR MORE INFORMATION